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ABSTRACT

We explore the impact of power structure on price, sensitivity of market price, and profits in a two-stage

supply chain with single product, supplier and buyer, and a price sensitive market. We develop and

analyze the case where the supplier has dominant bargaining power and the case where the buyer has

dominant bargaining power. We consider a pricing scheme for the buyer that involves both a multiplier

and a markup. We show that it is optimal for the buyer to set the markup to zero and use only a

multiplier. We also show that the market price and its sensitivity are higher when operational costs

(namely distribution and inventory) exist. We observe that the sensitivity of the market price increases

non-linearly as the wholesale price increases, and derive a lower bound for it. Through experimental

analysis, we show that marginal impact of increasing shipment cost and carrying charge (interest rate)

on prices and profits are decreasing in both cases. Finally, we show that there exist problem instances

where the buyer may prefer supplier-driven case to markup-only buyer-driven and similarly problem

instances where the supplier may prefer markup-only buyer-driven case to supplier-driven.

∗corresponding author



1 Introduction

An interesting issue that has arisen in recent years in the area of supply chain man-

agement is how decisions are effected by the bargaining power along the channel. For

example, with the advent of the internet in recent years, customers have access to much

more information including price, quality and service features of several potential sup-

pliers. This information has in many cases increased their position to acquire goods

and services. On the other hand, if the number of suppliers is limited, then clearly a

supplier’s position is increased.

In this paper, we explore the impact of bargaining power structure on price, sensitiv-

ity of market price, and profits in a two-stage supply chain. We examine the case when

a single product is shipped from a supplier to a buyer at a wholesale price and then sold

to a price-sensitive market. Operational costs (namely distribution and inventory) are

included in the analysis.

Throughout this paper we will refer to the supplier as he and the buyer as she. Two

models arise when either the supplier or buyer has dominant bargaining power in the

supply channel, similar to the economics literature where a dominant (or leader) firm

moves first and a subordinate (or follower) firm moves second (Gibbons [?], Stackelberg

[?]).

The supplier-driven channel occurs when the supplier has dominant bargaining power

and the buyer-driven channel occurs when the buyer has dominant bargaining power.

Even though buyer-driven models are encountered less frequently in literature (compared

to supplier-driven models), there is practical motivation: Messinger & Narasimhan [?]

provide an interesting discussion on how the bargaining power has shifted to the retailer

(buyer) in the grocery channel.

The organization of the paper is as follows: In Section 2 a brief literature review is

provided. In Section 3 we describe the assumptions of our analysis. The supplier-driven

and buyer-driven models are then developed in Section 4. An example is presented

in Section 5, including a comparison to the coordinated case where total net profit

throughout the supply chain is maximized. An analytical comparison of supplier-driven

and markup-only buyer-driven cases is given in Section 6. We also show that there are

cases under which a supplier will prefer the buyer-driven channel and where a buyer

will prefer the supplier-driven channel. Conclusions and future research are described in

Section 7.
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2 Literature Review

A significant amount of research has been done in the area of supply chain coordination.

Much of it has focused on minimizing the inventory holding and setup costs at different

nodes of the supply chain network. The classic Clark & Scarf [?] and Federgruen [?] are

examples. Traditionally, this type of research has assumed that the task of designing

and planning the operations is carried out by a central planner. However, the increased

structural complexity and the difficulty of obtaining and communicating all the infor-

mation scattered throughout the different units of the supply chain is a major block

in applying central planning. Research along decentralized control has been done by

a number of people and good reviews are found in Whang [?], Sarmiento & Nagi [?],

Erenguc et. al. [?], and Stock et. al. [?].

Although a significant portion of the coordination literature assumes vertical integra-

tion, some recent research focuses on contractual agreements that enable coordination

between independently operated units. Tsay et. al. [?] present a comprehensive review

on contract-based supply chain research. Jeuland & Shugan [?] present an early treat-

ment of coordination issues in a distribution channel. Porteus [?] establishes a framework

for studying tradeoffs between the investment costs needed to reduce the setup cost and

the operating costs identified in the EOQ. He also addresses the joint selection of the

setup cost and market price, comparable to Section 4.1 of our research. Abad [?] formu-

lates the coordination problem as a fixed-threat bargaining game, characterizes Pareto

efficient solutions and the Nash bargaining solution and proposes pricing schedules for

the supplier. Weng [?] also focuses on role and limitation of quantity discounts in chan-

nel coordination and shows that quantity discounts alone are not sufficient to guarantee

joint profit maximization under a model where both the market demand is decreasing

in prices and the operating cost depends on order quantities.

Ingene & Parry [?] investigate a model with fixed and variable costs at the two

stages and establish the existence of a menu of two-part tariffs that mimic all results of

a vertically integrated system. Wang & Wu [?] consider a similar model and propose

a policy that is superior for the supplier when there are many different buyers. Other

examples of related research include McGuire & Staelin [?] and Moorthy [?].

An extensive body of literature focuses on optimizing two-stage supply chains with

stochastic demands. Cachon [?] and Cachon & Zipkin [?] extend this literature by

developing game-theoretic models for the competitive cases of continuous review and

periodic review models. Moses & Seshadri [?] consider a periodic review model with

lost sales. Netessine & Rudi [?] develop and analyze models of interaction between a

supplier (wholesaler) and a single buyer (retailer) for “drop-shipping” supply chains.
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In this paper we try to extend the current literature by considering operating costs

explicitly along with different power structures of the market channel.

3 Model Assumptions

Figure 1 illustrates the flow of products, information and funds in our models. The

product is shipped from the supplier to the buyer at wholesale price t [$/unit], and is sold

to the market by the buyer at market price p [$/unit]. The deterministic market demand

µ[p] is linear in p: µ[p] = m(a − p), m = d
b
, a − b ≤ p ≤ a, 0 < b ≤ a, d > 0.

The buyer operates under a simple deterministic EOQ model. She places an order to

the supplier for a shipment of size q [units/order], τ [years] before she runs out of her

stock. The carrying charge (interest rate) that the buyer uses for calculating cost of

in-site and in-transit inventory is r [%/year]. The buyer has a reservation net profit RB,

and she will not participate in the channel if her net profit is less than RB. The supplier

does not have any operational costs, but incurs a unit variable cost c independent of any

decision variables. This would occur when the supplier is functionally organized and the

sales department acts independently of operations (which is typical for large firms).

The profit function of the supplier is given by:

πS[t] = (t− c)m(a− p) (1)

The supplier’s wholesale price t is freight on board (f.o.b.) origin; that is, the buyer

makes the payment and then takes responsibility for the product at the origin by bearing

the shipment and material handling costs for the shipments to her facility. The buyer

pays the carrier at the time the shipment reaches her facility. The shipment takes a

deterministic time τ [years] to arrive at the buyer’s facility and costs k [$/order]. The

transit time and the cost of an order are independent of the order quantity q [units/order]

and the carrier always has sufficient capacity. The cost of an order is incurred at the

moment the shipment arrives at the buyer’s facility.

The value of the product on-site is accounted as t [$/unit]. Assuming the value

and the holding cost of product dependent on t (rather than a fixed value) makes the

profit function nonconcave at certain ranges. Thus, our analysis will yield the type of

results related with the regions of concavity and nonconcavity, similar to Porteus [?] and

Rosenblatt & Lee [?].

The buyer’s decision variables are the market price p and the order quantity q. The

profit function of the buyer is given by:
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πB[p, q] = (p− t)µ[p]− kµ[p]/q − qrt/2− µ[p]τrt (2)

The approach of considering fixed unit costs at a certain stage and costs as a function

of operational costs at another stage of the supply chain is similar to the analysis of Ford

Customer Service Division done by Goentzel [?]. He focused on the customer allocation

problem where the cost per unit product at a warehouse that faces the customers is fixed,

but the cost of routing to a cluster of customers is depends on the choice of customers.

The assumption regarding the channel structure in this paper bears discussion. Mon-

ahan [?] notes that single supplier single buyer channels are often invisible to the public,

and lists examples where such a relationship may exist:

• “Small, closely-held or privately owned companies, producing exclusively for other

larger manufacturers or distributors;

• Common job-shops, supplying customized products for an individual buyer;

• Manufacturing arms or divisions of independently run parent companies.”

These examples define a very narrow scope of the economy, and it is true that most

of the economic markets are characterized by oligopoly or perfect competition. On the

other hand, Stuckey & White [?] explain how site specificity, technical specificity and

human capital specificity may create bilateral monopoly. They describe many indus-

tries, including mining, ready-mix concrete and auto assembly, that operate as bilateral

monopolies.

Single-supplier and single-buyer relationships are common also due to benefits of

long-term partnership. Some of these benefits are as follows (Tsay et. al [?]):

• Reduced ordering costs (i.e. reduced ordering overhead, due to established rela-

tionship)

• Additional efforts towards compatibility of information systems

• Additional information sharing

• Collaborative product design/redesign

• Process improvement, quality benefits

• Agreement on standards on lead-times and quality measures
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Therefore a significant portion of firms in the economy can benefit by such a relationship.

We assume that the parties are interested in a long-term relationship and are using

a contract to enforce commitment to the relationship. Even though the dominant party

may deviate, we assume that s/he does not do so, since this might have associated costs.

4 Two-Stage Supply Chain Models

Both the supplier-driven and buyer-driven two-stage supply chain models are developed

in this Section. Before developing these models, we first discuss the buyer’s decision

problem given the wholesale price t.

4.1 Buyer’s Decision Problem When t is Given

In this section we investigate the decision problem of the buyer, whose objective is to

find the optimal market price p∗0, given the wholesale price t. As mentioned previously,

this problem was studied in detail in[?], and we summarize and extend the results here.

By setting dπB[p,q]
dq

= 0 and dπB[p,q]
dp

= 0 and solving for q and p, we obtain:

q =

√
2km(a− p)

rt
(3)

p = w/2 + k/2q (4)

where w = a+ (1 + rτ)t.

The extreme points of πB[p, q] solve these equations. When these equations are solved

simultaneously, we obtain a cubic polynomial equation:

Φ(p) = p3 + Φ2p
2 + Φ1p+ Φ0 = 0 (5)

where

Φ2 = −(a + w),

Φ1 = ((4a+ w)w)/4,

Φ0 = −aw2/4 + krt/(8m)

We use πB[p] to denote the net profit as a function of p alone: πB[p] = πB[p, q
∗[p]].

Substituting the expression for q from (3) into the net profit function πB[p] yields:
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πB[p] =

{
m(a− p)p− (1 + rτ)m(a− p)t− ψ

√
(a− p)t if a− b ≤ p < a

0 if p = a
(6)

where ψ =
√
2krm.

Notice that the profit function is defined as 0 when p = a since a discontinuity would

otherwise arise. We now define (p∗0, q
∗
0) as the optimal (p, q) pair when the constraint

a−b ≤ p in the definition of the linear demand function is taken into account. π∗
B[p

∗
0, q

∗
0] =

π∗
B[p

∗
0] is the optimal solution value:

Definition 1 Let p∗0 = argmax{a−b≤p≤a}πB[p], q∗0 = q[p∗0] and π∗
B[p

∗
0, q

∗
0] = max{a−b≤p≤a}πB[p].

The regions where πB[p] is concave and convex can be found by investigating the

second order derivate of πB[p]:

d2πB[p]

dp2
= −2m+

ψt2 ((a− p)t)−3/2

4

which gives us the following:

Theorem 1 πB[p] is concave when p ≤ p̃ and convex when p > p̃, where p̃ = a −(
ψ
√
t

8m

)2/3

.

Now let us characterize the cubic equation Φ(p) = 0, when it has three roots:

Theorem 2 If t ≤ t then Φ(p) = 0 has three real roots p0,1, p0,2 and p0,3. Let p0 =

argmax{p=p0,1,p0,2,p0,3}πB[p]. p0 < p̃. p0,min = min {p0,1, p0,2, p0,3} < w
2
. p0 =

min{ {p0,1, p0,2, p0,3}\{p0,min} }.

Proof: Given in A.1. ✷

Theorem 2 tells us that among the three roots of (5), the middle one is the one that

maximizes πB[p].

4.2 Supplier-driven Channel

Let us assume that the supplier has dominant bargaining power and has the freedom

to decide on any t value that maximizes his net profit with no consideration for the

buyer. The buyer reacts to the wholesale price t declared by the supplier by selecting

her optimal price p∗0[t] (and the corresponding q∗0[t]) that maximizes her net profit given

t.
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Since the supplier knows the cost structure and the decision model of the buyer, he

also knows the reaction p0[t] of the buyer to t. Since p0[t] determines p∗0[t] as described

earlier, we will present some of our results in terms of p0[t].

We define the sensitivity of the buyer’s optimal price ξ[t, p0[t]] as follows:

Definition 2 Let ξ[t, p0[t]] denote the sensitivity of the buyer’s optimal price p0[t] with

respect to the supplier’s wholesale price t. ξ[t, p0[t]] is the ratio of marginal change in

p0[t] to marginal change in t at the point (t, p0[t]).

An expression for ξ[t, p0[t]] is provided in the following Theorem:

Theorem 3 ξ[t, p0[t]] =
ξ0[t,p0[t]]
ξ1[t,p0[t]]

, where

ξ0[t, p] = (1 + rτ)(p2 − (2a + w)p/2 + aw/2)− kr/(8m) (7)

where w = a + (1 + rτ)t, and

ξ1[t, p] = 3p2 + 2Φ2p+ Φ1. (8)

Proof: Given in Appendix A.2. ✷

The following Theorem gives a lower bound for ξ[t, p0[t]] that is independent of any

parameters and decision variables:

Theorem 4 ξ[t, p0[t]] > 1/2.

Proof: Given in Appendix A.3. ✷

An instance that achieves this lower bound is one that has all the logistics related

costs equal to zero (k = 0, r = 0, τ = 0). This instance is equivalent to the classic

bilateral monopoly model in the Economics literature (Spengler [?], Tirole [?]), where

the sensitivity of market price to wholesale price is always 1/2.

The optimal wholesale price for Model 3 can be determined by taking the partial

derivative of πS[t] with respect to t and setting it equal to zero:

a− p

t− c
= ξ[t, p0[t]] (9)

We will refer to solution of the above equation as t2. Since (9) does not yield a

closed form expression for t2, one has to resort to numerical methods for solving the

equation. The following Theorem, with proof given in Appendix A.4, guarantees that

the numerical solution would indeed be the global optimum:

Theorem 5 πS[t] is concave in t.
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4.3 Buyer-driven Channel

In this case the buyer takes an active role and declares a nonnegative price multiplier

α and a nonnegative markup β and states that she will set p = αt + β. The supplier

reacts by choosing the t that maximizes his net profit given the α and β declared by

the buyer. The buyer has complete knowledge of the reaction wholesale price t3[α, β]

that the supplier will respond with to her declared α and β. She chooses her (α, β) so

as to maximize her net profit PB[α, β], given t3[α, β]. We assume that the supplier will

participate in the supply chain channel as long as his profit is nonnegative.

One interesting result is that the buyer would use only a multiplier under these

conditions:

Theorem 6 β∗ = 0.

Proof: The supplier’s profit function is πS = (t − c)m(a − p). The optimal t value

is found by taking the partial derivative of πS[t] with respect to t and setting equal to

zero.

∂πS [t]

∂t
= m

(
(a− p)− ∂p

∂t
(t− c)

)
= 0

t =
a− p

α
+ c (10)

Assuming that p is fixed, α and β can be calculated so as to obtain p once t is

determined. Therefore, the selection of t determines α and β. Equation (10) shows that

the supplier would select a smaller t as α increases, all other things being fixed. The

largest α can be obtained by setting β = 0. Since this fact holds for any fixed p value,

β∗ = 0. ✷

Since the optimal markup is equal to zero (β∗ = 0) then P (α, β) can be optimized

with respect to α alone to find α∗. By differentiating the supplier’s profit function

with respect to t and setting it to 0, we get the supplier’s optimal wholesale price

t3[α, β] =
a+αc−β

2α
. The corresponding market price p3[α, β] =

a+αc+β
2

is then found by

substituting into the market demand function.

The terms t3[α, β] and t3[α, β] can be substituted into (6) to obtain the buyer’s net

profit function PB[α, β] in the buyer-driven channel.

PB[α, β] cannot be solved analytically to find (α∗, β∗). On the other hand, Theorem

6 tells us that the buyer will always set β∗ = 0 at the optimal, and will decide only on α.

The first order condition ∂PB [α,0]
∂α

= 0 is not analytically solvable. Yet, in the following

Theorem, we show concavity of PB[α, β] in α, suggesting that a simple search algorithm

would enable us to find α∗ which is globally optimal:
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Theorem 7 PB[α, 0] is concave in α.

Proof:

The expression in (6) is composed of three components, the first is a function in p

multiplied by the positive constant m, the latter components are functions of p and t

multiplied by negative constants. We will prove that f1[α] = (a − p3[α, 0])p3[α, 0] is

concave, and f2[α] = (a− p3[α, 0])t and f3[α] =
√
f2[α] are convex, which will prove the

concavity of PB[α, 0].

First we focus on f1[α] = (a− a+αc
2

)(a+αc
2

) = a2−α2c2

4
. Since df 2

1 /dα
2 = −c2/2 < 0, f1

is concave in α.

Next we focus on f2[α] = (a−αc
2

)(a+αc
2α

) = a2−c2α2

4α
. Since d2f2/dα

2 = a2

2α3 > 0, f2 is

convex in α.

Finally we focus on f3 =
√

a2−c2α2

4α
. The second derivative is d2f3/dα

2 = 3a4−6a2c2α2−c4α4

8α3(a2−c2α2)

!
a2

α
−c2α

.

Since the denominator is the product of 8α2, (a2−c2α2), and a square-root expression, it

is always positive. The numerator can be expressed as (2a4 −2a2c2α2)+(a4 −2a2c2α2 −
c4α4), which can further be expressed as 2a2(a2 − c2α2) + (a2 − c2α2)2. Since both of

the terms in this expression are positive, we have d2f3
dα2 > 0, and thus f3 is convex.

Having shown the concavity of its three components, we conclude that PB[α, 0] is

concave. ✷

5 An Example Channel Setting

Consider a supply chain channel where c = 5.600, a = 12.800, k = 480, τ = 0.010, r =

0.100, m = 2180, b = 12.800, RB = 0. Figure 2 shows the profits/costs related with the

buyer when the supplier sets the wholesale price as t = 11.000.

In Figure 2, w/2, p0 and p̃ = 12.577 are indicated with dashed vertical lines. If there

were no logistics related costs, the buyer would set her price to w/2 = 11.906. The

optimal price when the logistics costs are considered is greater: p∗0 = p0 = 12.116. The

optimal profit of the buyer is π∗
B[p

∗
0] = πB[12.112] = 392.848. As long as a − b is less

than 12.116, the buyer would clearly keep pricing at p∗0 = p0 = 12.116. If a − b were

greater than 12.116, the buyer would see if setting p = a− b would bring any profits or

not, and if πB[a− b] ≥ RB she would set p∗0 = a− b.

In order to compare the buyer-driven and supplier-driven models to “optimal”, we

use the coordinated net profit function πC [p, q] can be defined by:

πC [p, q] = (p− c)µ[p]− kµ[p]/q − qrc/2− µ[p]τrc (11)
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This function is similar to πB[p, q] in (2), but there are some differences. Here, the

profit per unit is (p− c), as opposed to profit per unit (t − c) of πB[p, q]. The value of

the product on-site and in transit is accounted as c [$/unit] in πC [p, q], as opposed to t

[$/unit] of πB[p, q].

Cost c reflects the true value of the product, rather than the artificially created

wholesale price t. A central planner would use the true value of the product in calculating

the logistics costs. Notice that t does not appear in this cost function at all.

Analysis of the coordinated channel, where t = c = 5.600, tells us that the optimal

market price is p∗0 = p0 = 9.269. The optimal profit of the buyer is π∗
B[p

∗
0] = πB[9.269] =

26165.053.

Next we consider the supplier-driven model, and investigate the best pricing policies

of the supplier. We are implicitly assuming that the buyer would prefer to operate at

exactly zero profit, rather than destroy the channel. We focus on the supplier’s profit

maximization problem in this case. The supplier solves a−p0[t]
t−c = ξ[t, p0[t]] as given in

(9). We perform a bisection search to find (p2, t2). The solution is found to be (t2, p2) =

(t2, p0[t2]) = (8.974, 11.009), with buyer’s net profit πB[p2] = πB[11.009] = 6075.747 as

opposed to her best possible profit of πB[c] = 26165.053. Meanwhile the supplier attains

πS[8.974] = 13176.616.

A plot of the change of p0 with respect to t seems to suggest a linear relationship

(constant sensitivity). However, a plot of the change of the sensitivity ξ of market price

with respect to t in Figure 3 shows that this is not the case. Between values of t = c

and t = t̄ there is a change of ∼10%. This shows that the buyer’s reaction price p0

becomes increasingly sensitive to the supplier’s wholesale price t. This can be explained

as follows: As the wholesale price becomes greater, the buyer has to account not only for

this increase in prices, but also with the fact that the operational costs become a greater

percentage of total costs. The market becomes more and more of a niche market, and

market price increases nonlinearly.

Next we consider the buyer-driven case where the buyer is interested in maximizing

his net profit function PB[α, β] shown in the contour plot of Figure 4. It is easy to see

that α ≈ 1.6 and β = 0 at the highest point of the surface. The precise values are

(α∗, β∗) = (1.600, 0). The reaction wholesale price of the supplier is t∗3 = 6.799 and the

market price is p∗3 = p3 = 10.880. Even though it is optimal to have β∗ = 0 at α∗, that’s

not the case for other α values. So if value were fixed to α = αF due to certain conditions

in the channel, one would set β to the unique positive value that corresponds to the β

value of the point where the surface α = αF is tangent to the contour line of PB[α, β].

On the other hand, for a fixed RB (an isoprofit curve in Figure 4) and a fixed α, there

exist two possible choices of β, and the buyer should select the one that yields greater

11



profits for the supplier. Finally, we compute optimal β for α = 1 as β∗ = 3.765. This is

where the buyer is restricted to declaring only a markup (thus “β-only buyer-driven”).

Tables 1, 2 and 3 show the profits, prices and sensitivities respectively in different

channel structures. The total profit in the coordinated channel structure is the max-

imum, followed by the buyer-driven structure. This result is due to the fact that our

model assumes logistics costs only at the buyer, not at the supplier, and in the buyer-

driven case the buyer declares her multiplier (and thus sensitivity) a high value to force

the supplier choose a lower wholesale price. The increase in total profit when one goes

from supplier-driven to buyer-driven is ∼ 4.3%.

Channel Structure Supplier’s Profit Buyer’s Profit Total Profit

Coordinated 0 26165.053 26165.053
Supplier-driven 13176.616 6075.747 19252.363
Buyer-driven 5020.9396 15053.371 20074.3106

β-only Buyer-driven 6429.454 12111.658 18541.112

Table 1: Profits in different channel structures

Channel Structure Wholesale Price Market Price

Coordinated t1 = 5.600 p1 = 9.269
Supplier-driven t2 = 8.974 p2 = 11.009
Buyer-driven t3 = 6.800 p3 = 10.880

β-only Buyer-driven tβ = 7.317 pβ = 11.083

Table 2: Prices in different channel structures

Channel Structure Sensitivity at the Optimal

Coordinated 0.5112
Supplier-driven 0.531
Buyer-driven 1.600

β-only Buyer-driven 1.000

Table 3: Sensitivity ξ[t, p0[t]] of market price to wholesale price in different channel

structures

We also performed a numerical analysis to observe the impact of changing (m, k) and

(m, r) on prices and sensitivity of market price. For the supplier-driven model we used

Mathematica and searched for t2 by a bisection routine. For the buyer-driven model we

used online SNOPT nonlinear optimization solver at NEOS server [?], and expressed the

model in AMPL language.
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Figure 5 shows the change of p2 with changing values of the market demand multiplier

m and the ordering cost k. One observation is that as m increases, p2 decreases, which

suggests economies of scale in the supply chain due to reduced ordering cost per unit.

This tells that as the market size increases, decreasing the price of the product is more

beneficial for the buyer (since smaller market price takes place only when the wholesale

price is smaller, we infer that the wholesale price also decreases with larger m). Similar

economies of scale results helping all players. This pattern is due to the fact that the

ordering cost does not increase proportionally as demand increases. Also, the impact of

increased demand is much more pronounced in smaller values of m (up to a point). For

a fixed m value, p2 (and thus t2) increase with increasing values of the ordering cost k.

However, the increase in p2 becomes smaller at higher values of k and m. Meanwhile,

it’s interesting to note that this economies of scale take place only after a certain market

size, and higher k requires greater demands for economies of scale to come into effect.

A similar analysis of change with respect to (m, r) shows that for a fixed m value,

p2 (and thus t2) increase with increasing values of the ordering cost r. However, the

increase in p2 becomes smaller at higher values of r and m.

The same patterns for the price (p3) is observed in the buyer-driven case and the

sensitivities (ξ[t2, p2] and α
∗) in supplier and buyer-driven cases.

6 Comparison of Supplier-driven and β-only Buyer-

driven Channels

In this section we compare the supplier-driven channel to β-only buyer-driven channel.

We show that there exist problem instances where the buyer may prefer the supplier-

driven to β-only buyer-driven channel and similarly problem instances where the supplier

may prefer the β-only buyer-driven channel to supplier-driven. For notational simplic-

ity, we show these results only for the classic bilateral monopoly (BM) model, where

operational costs are zero (k = 0, r = 0).

In BM, by setting ∂πB

∂p
= 0 we find that the buyer selects p(0) = (a + t)/2 as the

market price. When p(0) is substituted, the supplier’s profit function becomes πS =

(t− c)m(a − t)/2. By setting ∂πS

∂p
= 0 we find that the supplier selects t(0) = (a + c)/2

as the wholesale price, and the buyer sets p(0) = (a + t)/2 = (3a + c)/4 as the market

price. The optimal profits can be easily derived by substitution as π
(0)
S = m(a − c)2/8

and π
(0)
B = m(a− c)2/16.

For a fixed α, the optimal β can be derived by setting
∂π

(α,β)
B

∂β
= 0 and solving for β.

The two roots are:
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β = {a+ cα2 − α
√
c(2a− c+ 2cα + cα2), (12)

a+ cα2 + α
√
c(2a− c+ 2cα+ cα2)} (13)

β should be less than a− c, since a larger β would cause zero market demand. Since the

second root is always greater than a (and thus a− c), we use only the first root.

In realistic settings, we can normalize to a fixed α = 1 (i.e. the multiplier-markup pair

(1, β)). The supplier selects t(β) = (a−β)/2, and the buyer sets the market price to p(β) =

(a+ β)/2. When these are substituted into π
(β)
B , one obtains β = (a+ c)−√

2c
√
a+ c.

Substituting this back into the price and profit functions, we obtain:

t(β) =
√
c(a+ c)/2, (14)

p(β) = (a+ c)−
√
c(a+ c)/2, (15)

π
(β)
S = m

(
−2c+

√
2c(a+ c)

)
/4, (16)

π
(β)
B = −m

(
−2c+

√
2c(a+ c)

)(
−(a+ c) +

√
2c(a+ c)

)
/2 (17)

The pricing scheme that involves only β is not the most advantageous scheme for the

buyer. The buyer would always prefer a pricing scheme that involves a multiplier when

possible. Similarly, the supplier would always prefer supplier-driven to the buyer-driven

(where multiplier is allowed).

An interesting question is whether the buyer would ever be willing to give up the

β-only pricing scheme and prefer a supplier-driven. The next theorem answers this

question, and is obtained by comparing πB under β-only and supplier-driven models:

Theorem 8 In BM, the buyer would prefer supplier-driven setting to β-only buyer-

driven when

(a− c)2 − 8
(
−2c+

√
2c(a+ c)

)(
−(a + c) +

√
2c(a+ c)

)
> 0 (18)

Proof:

π
(0)
B > π

(β)
B (19)

m(a− c)2/16−m
(
−2c +

√
2c(a+ c)

)(
−(a + c) +

√
2c(a+ c)

)
/2 > 0 (20)

(a− c)2 − 8
(
−2c +

√
2c(a+ c)

) (
−(a + c) +

√
2c(a + c)

)
> 0 (21)

✷

The instances where (18) holds are characterized by very high a compared to c. If we

similarly consider the supplier’s preferences:
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Theorem 9 In BM, the supplier would prefer supplier-driven setting to β-only buyer-

driven when

(a− c)2 + 4c− 2
√

2c(a+ c) > 0 (22)

Proof:

π
(0)
S > π

(β)
S (23)

m(a− c)2/8−m
(
−2c+

√
2c(a+ c)

)
/4 > 0 (24)

(a− c)2 + 4c− 2
√

2c(a+ c) > 0 (25)

✷

The instances where (22) holds are characterized by a being greater than c. Theorems

8 and 9 tell us that there does not exist a region where both parties prefer the same

case. Thus what determines which case will occur is the distribution of the bargaining

power in the channel.

7 Conclusions

In this paper we have explored the impact of power structure on price, sensitivity of

market price and profits in a two-stage supply chain. Following analysis of the buyer’s

decision problem for a given wholesale price, we analyzed both the supplier-driven and

buyer-driven cases.

We showed that if the buyer uses a linear form of a price increase that it is optimal

for the buyer to set the markup to zero and use only a multiplier. We also observed that

the market price and its sensitivity with respect to the wholesale price becomes greater

in the supplier-driven case compared to a channel where operational costs at the buyer

are ignored. We found that the sensitivity of the market price increases non-linearly

as the wholesale price increases. In addition, we observed that marginal impacts of

increasing shipment cost and carrying charge (interest rate) on prices and profits are

decreasing in both cases. Finally, we showed that there are cases when a buyer will

actually prefer a supplier-drvien channel to a buyer-driven one and where a supplier will

prefer a buyer-driven channel to a supplier-driven one.

Although, as we discussed earlier, there are many cases where the assumption of full

information is applicable, there are many cases where information assymetries arise. In

this case additional strategic considerations must be incorporated into the analyses.
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Appendix

A Proofs

A.1 Theorem 2

Proof: We are interested in characterizing the three roots of Φ(p) = 0 given that they

exist. The case where a real cubic equation has all real and distinct roots is known as

the “irreducible case”, and holds when its discriminant

∆ = 18Φ0Φ1Φ2 − 4Φ0Φ
3
2 + Φ2

1Φ
2
2 − 4Φ3

1 − 27Φ2
0 (26)

is positive. (Dickson (1939) [?], p48-50) describe a “trigonometric solution” method

for this case.

If we let p0 = argmax{p=p0,1,p0,2,p0,3}πB[p] then p0 < p̃. This follows from Theorem 1:

πB[p] is concave when p < p̃ and has a maximum in the interval (t, p̃). πB[p] is convex

when p > p̃ and has a minimum in the interval (p̃, a). Thus the root with the maximum

net profit value satisfies p0 < p̃.

We derived the polynomial equation Φ(p) = 0 starting with (p− w/2) = k/(2q).

Note that taking the square of both sides, we introduce a new solution to the equation,

namely the p value such that |p−w/2| = p−w/2, even though p−w/2 is restricted to

positive values. So we have a new p value, which is neither an extreme nor an inflection

point, that satisfies Φ(p) = 0. This p value also satisfies p−w/2 < 0 and thus p < w/2.

Since the other roots satisfy p − w/2 > 0 and thus p > w/2, the mentioned p value is

the minimum p0,min of the three roots {p0,1, p0,2, p0,3} of Φ(p) = 0. We can also deduce

that the maximum of πB[p] is achieved at p0 ∈ (w/2, p̃), and is the smaller of the two

roots that satisfy p > w/2, that is, p0 = min{p0,1, p0,2, p0,3}\{p0,min}. ✷

A.2 Theorem 3

Proof: Equation (5) gives the relation between a given t and the supplier’s optimal

price p0. Taking the partial derivative of both sides with respect to t we obtain:
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3p2∂p

∂t
+
∂Φ2

∂t
p2 + 2p

∂p

∂t
Φ2 +

∂Φ1

∂t
p+ Φ1

∂p

∂t
+
∂Φ0

∂t
= 0

(
3p2 + 2Φ2p+ Φ1

) ∂p
∂t

−
(1 + rτ)p2 +

((1 + rτ)(4a+ w) + (1 + rτ)w) p/4−
a(1 + rτ)(2w)/4 + kr/(8m) = 0

ξ1[t, p]
∂p

∂t
−(

(1 + rτ)p2 − (1 + rτ)(2a + w)p/2 + a(1 + rτ)w/2− kr/(8m)
)

= 0

ξ1[t, p]
∂p

∂t
−(

(1 + rτ)
(
p2 − (2a+ w)p/2 + aw/2

) − kr/(8m)
)

= 0

ξ1[t, p]
∂p

∂t
− ξ0[t, p] = 0

From the last line we have ∂p
∂t

= ξ0[t,p]
ξ1[t,p]

. When we substitute p = p0[t] we have ∂p0[t]
∂t

=
ξ0[t,p0[t]]
ξ1[t,p0[t]]

. ✷

A.3 Theorem 4

Proof: Our proof has two steps: First we show that F [w, p] = ξ0[t, p]− ξ1[t, p]/2 < 0.

Next we will show that ξ1[t, p]/2 < 0, which enables us to state that ξ[t, p] = ξ0[t,p]
ξ1[t,p]

.

¿From (4), we can obtain w = 2p−∆, where ∆ = k/2q > 0. We substitute this into

F [w, p] at the very first step to simplify our analysis:

F [w, p] = F [2p−∆, p]

= ξ0[t, p]− 1

2
ξ1[t, p]

= (−kr/m−∆2 − 4ar∆τ + 4pr∆τ)/8

= (−kr/m−∆2 − 4r∆τ(a− p))/8

The last line is composed of a numerator with three negative components, thus

F [w, p] < 0.

Since F [w, p] = ξ0[t, p]− ξ1[t, p]/2 < 0, we can just take the second term to the right

hand side and divide both sides by ξ1[t, p]. If ξ1[t, p] < 0 then ξ[t, p] > 1/2. The last and
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necessary step is showing that ξ1[t, p] < 0, so that the inequality changes signs when

division by ξ1[t, p] takes place.

A careful inspection of (5), (6) and (8) reveals that ξ1[t, p] =
dΦ(p)
dt

. From Theorem

2b, for a given t value, p0 is the second largest root of Φ(p) = 0. Since Φ(w/2) > 0,

Φ(p) decreases from the positive value of Φ(w/2) at p = w/2 to the value of Φ(p0) = 0

at p = p0. More formally,

ξ1[t, p0] =
dΦ(p0)

dt
< 0

Thus when we divide both sides of the inequality ξ0[t, p] < ξ1[t, p]/2 by ξ1[t, p], the sign

changes direction. ✷

A.4 Theorem 5

Proof:

(9) tells us that a−p2
t2−c = ξ[t, p0[t]]

We are interested in showing that this indeed gives us the global optimum, by showing

the concavity of πS[t]. Thus, we are interested in showing that

∂2πS[t]

∂t2
= −2

∂p

∂t
− ∂2p

∂t2
(t− c) < 0

We can use (9) in the above expression when substituting ∂p
∂t

and evaluating ∂2p
∂t2

:

−2
∂p

∂t
− ∂2p

∂t2
(t− c) =

−2
a− p

t− c
−

∂p
∂t
(t− c)− (a− p)

(t− c)2
(t− c) =

−2(a− p)− a−p
t−c (t− c) + (a− p)

(t− c)
=

−2
(a− p)

(t− c)
< 0

where the last inequality follows from (a− p) and (t− c) being positive. ✷
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Figure 1: The supply chain channel

Figure 2: Profits/Costs for the buyer when t = 11
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Figure 3: Change of the sensitivity (ξ) of p with respect to t in the supplier-driven case

Figure 4: PB[α, β], contour plot
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Figure 5: Change of p2 with respect to m and k in the supplier-driven case
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